On Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2

نویسندگان

  • Tian-Xiao He
  • Peter Jau-Shyong Shiue
چکیده

Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or polynomial sequences defined by linear recurrence relations. The applications using the method to solve some algebraic and ordinary differential equations are presented. AMS Subject Classification: 05A15, 65B10, 33C45, 39A70, 41A80.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)

The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...

متن کامل

ZETA SERIES GENERATING FUNCTION TRANSFORMATIONS RELATED TO POLYLOGARITHM FUNCTIONS AND THE k-ORDER HARMONIC NUMBERS

We define a new class of generating function transformations related to polylogarithm functions, Dirichlet series, and Euler sums. These transformations are given by an infinite sum over the jth derivatives of a sequence generating function and sets of generalized coefficients satisfying a non-triangular recurrence relation in two variables. The generalized transformation coefficients share a n...

متن کامل

Linear Recurrence Sequences with Indices in Arithmetic Progression and Their Sums

For an arbitrary homogeneous linear recurrence sequence of order d with constant coe cients, we derive recurrence relations for all subsequences with indices in arithmetic progression. The coe cients of these recurrences are given explicitly in terms of partial Bell polynomials that depend on at most d 1 terms of the generalized Lucas sequence associated with the given recurrence. We also provi...

متن کامل

Some classes of statistically convergent sequences of fuzzy numbers generated by a modulus function

The purpose of this paper is to generalize the concepts of statisticalconvergence of sequences of fuzzy numbers defined by a modulus functionusing difference operator $Delta$ and give some inclusion relations.

متن کامل

Factorizations and Representations of Second Order Linear Recurrences with Indices in Arithmetic Progressions

In this paper we consider second order recurrences {Vk} and {Un} . We give second order linear recurrences for the sequences {V±kn} and {U±kn}. Using these recurrence relations, we derive relationships between the determinants of certain matrices and these sequences. Further, as generalizations of the earlier results, we give representations and trigonometric factorizations of these sequences b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009